山田 裕介

 

略歴

平成 5

大阪大学理学部 高分子学科 卒業

平成10

大阪大学大学院理学研究科 高分子学専攻 博士(後期)課程 修了

博士(理学)

平成10

通商産業省 工業技術院 大阪工業技術研究所(現・産業技術総合研究所)

エネルギー・環境材料部 任期付研究員(通商産業技官)

平成13

独立行政法人 産業技術総合研究所 生活環境系特別研究体 研究員

平成16

独立行政法人 産業技術総合研究所 ユビキタスエネルギー研究部門 研究員

平成17

               同              主任研究員

平成19 – 20

カリフォルニア大学バークレー校 客員研究員

平成21 – 26

国立大学法人 大阪大学大学院工学研究科生命先端工学専攻(福住研究室)准教授

独立行政法人 産業技術総合研究所 招へい研究員

平成27年より

公立大学法人 大阪市立大学大学院工学研究科化学生物系専攻 教授

 

所属学会

                 日本化学会、触媒学会、錯体化学会
 

論文リスト (September 28, 2020)

  1. Single-Crystal-to-Single-Crystal Installation of Ln4(OH)4 Cubanes in an Anionic Metallosupramolecular Framework, N. Yoshinari, N. Meundaeng, H. Tabe, Y. Yamada, S. Yamashita, Y. Nakazawa, T. Konno, Angew. Chem. Int. Ed. in press.
  2. Immobilization of Ir(OH)3 Nanoparticles in Mesospaces of Al-SiO2 Nanoparticles Assembly to Enhance Stability for Photocatalytic Water Oxidation, G. Sakamoto, H. Tabe, Y. Yamada, Catalysts 10, 1015 (2020).
  3. Improvement of Float Charge Durability for LiCoO2 Electrodes under High Voltage and Storage Temperature by
    Suppressing O1-Phase Transition, M. Hirooka, T. Sekiya, Y. Omomo, M. Yamada, H. Katayama, T. Okumura, Y. Yamada, K. Ariyoshi, J. Power Sources 463, 228127 (2020).
  4. Unravelling the Role of Metallic Cu in Cu-CuFe2O4/C Nanohybrid for Enhanced Oxygen Reduction Electrocatalysis
    B. J. Borah, Y. Yamada, P. Bharali, ACS Applied Energy Materials, 3, 3488-3496 (2020).
  5. Reaction Mechanism and Kinetic Analysis of the Solid-State Reaction to Synthesize Single-Phase Li2Co2O4 Spinel
    K. Ariyoshi, Y. Yuzawa, Y. Yamada, J. Phys. Chem. C, 124 , 8170-8177 (2020).
  6. Self-discharge tests to measure side-reaction currents of a Li[Li1/3Ti5/3]O4 electrode, K. Ariyoshi, T. Toda, Y. Yamada,
    J. Electroanal. Chem., 864, 114110 (2020)
  7. Elucidation of the origin of voltage hysteresis in xLi2MnO3∙(1−x)LiCoO2 using backstitch charge-discharge method
    K. Ariyoshi, T. Inoue, Y. Yamada, Electrochim. Acta, 334, 135623 (2020)
  8. Utilization of core-shell nanoparticles to evaluate subsurface contribution to water oxidation catalysis of [CoII(H2O)2]1.5[CoIII(CN)6] nanoparticles, H. Tabe, A. Kitase, Y. Yamada, Appl. Catal. B 262, 118101 (2020).
  9. Relationship between changes in ionic radius and lattice dimension of lithium manganese oxide spinels during lithium insertion/extraction, K. Ariyoshi, H. Yamamoto, Y. Yamada, Solid State Ionics 343, 115077 (2019)
  10. Creation and stabilisation of tuneable open metal sites in thiocyanato-bridged heterometallic coordination polymers to be used as heterogeneous catalysts, H. Tabe, M. Matsushima, R. Tanaka, Y. Yamada, Dalton Trans. 48, 17063-17069 (2019).
  11. Comparative Measurements of Side-Reaction Currents of Li[Li1/3Ti5/3]O4 and Li[Li0.1Al0.1Mn1.8]O4 Electrodes in Lithium-Ion Cells and Symmetric Cells, K. Ariyoshi, Y. Fukunishi, Y. Yamada, J. Electrochem. Soc. 166, A3314-A3318 (2019).
  12. Degradation Mechanism of LiCoO2 under Float Charge Conditions and High Temperatures, M. Hirooka, T. Sekiya, Y. Omomo, M. Yamada, H. Katayama, T. Okumura, Y. Yamada, K. Ariyoshi, Electrochim. Acta  320, 134596 (2019).
  13. Unique Half Embedded/Exposed PdFeCu/C Interfacial Nanoalloy as High-Performance Electrocatalyst for Oxygen Reduction Reaction, B. J. Borah, H. Saikia, C. Goswami, K. K. Hazarika, Y. Yamada, P. Bharali, ChemCatChem, 11, 3522-3529 (2019).
  14. Electrochemical impedance analysis of Li[Li0.1Al0.1Mn1.8]O4 used as lithium-insertion electrodes by the diluted electrode method, K. Ariyoshi, S. Mizutani, Y. Yamada, J. Power Sources, 435, 226810 (2019).
  15. Measurement of Side-Reaction Currents on Electrodes of Lithium-Ion Cells Using a Battery Cycler with a High-Precision Current Source, K. Ariyoshi, Y. Fukunishi, Y. Yamada, Electrochemistry, 87, 188-192 (2019).
  16. Rate capability of carbon-free lithium titanium oxide electrodes related to formation of electronic conduction paths observed by color change, K. Ariyoshi, T. Ino, Y. Yamada, J. Power Sources, 430, 150-156 (2019).
  17. Li2Ni0.2Co1.8O4 having a Spinel Framework as Zero-Strain Positive Electrode Material for Lithium-Ion Batteries, K. Ariyoshi, Y .Orikasa, K. Kajikawa, Y. Yamada, J. Mater. Chem. A, 7, 13641-13649 (2019).
  18. A Clue to High Rate Capability of Lithium-Ion Batteries Obtained by an Electrochemical Approach Using “Diluted” Electrode, K. Ariyoshi, S. Mizutani, T. Makino, Y. Yamada, J. Electrochem. Soc., 165, A3965-3970 (2018).
  19. Cobalt-copper Nanoparticles Catalyzed Selective Oxidation Reactions: Efficient Catalysis at Room Temperature, B. J. Borah, A. Mahanta, M. Mondal, H. Gogoi, Y. Yamada, P. Bharali, Chem. Select, 3, 9826-9832 (2018).
  20. Quantitative analysis of large voltage hysteresis of lithium excess materials by “backstitch charge and discharge” method, K. Ariyoshi, T. Inoue, Y. Yamada, J. Electrochem. Soc., 165, A2675-A2681 (2018).
  21. Effect of surface acidity of cyano-bridged polynuclear metal complexes on catalytic activity for hydrolysis of organophosphates, H. Tabe, C. Terashima, Y. Yamada, Catal. Sci. Technol., 8, 4747-4756 (2018).
  22. Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals, H. Tabe, H. Takahashi, T. Shimoi, S. Abe, T. Ueno, Y. Yamada, Appl. Catal. B, 237, 1124-1129 (2018).
  23. High dimensional stability of LiCoMnO4 as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life, K. Ariyoshi, H. Yamamoto, Y. Yamada, Electrochim. Acta, 260, 498-503 (2018).
  24. Photocatalytic water oxidation by persulphate with a Ca2+ ion-incorporated polymeric cobalt cyanide complex affording O2 with 200% quantum efficiency, Y. Yamada,  K. Oyama, T. Suenobu, S. Fukuzumi, Chem. Commun., 53, 3418-3421 (2017).
  25. Dual Function Photocatalysis of Cyano-Bridged Heteronuclear Metal Complexes for Water Oxidation and Two-Electron Reduction of Dioxygen to Produce Hydrogen Peroxide as a Solar Fuel, Y. Aratani, T. Suenobu, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chem. Commun., 53, 3473-3476 (2017).
  26. Heterogeneous catalase-like activity of gold(I)–cobalt(III) metallosupramolecular ionic crystals, M. Yamada, N. Yoshinari, N. Kuwamura, T. Saito, S. Okada, S. P. Maddala, K. Harano, E. Nakamura, K. Yamagami, K. Yamanaka, A. Sekiyama, T. Suenobu, Y. Yamada, Takumi Konno, Chem. Sci., 8, 2671-2676 (2017).
  27. Synthesis of CuPd alloy nanoparticles with high efficacy for aqueous phase catalytic reduction of nitroaromatics and hexavalent chromium, H. Saikia, B. J. Borah, Y. Yamada, P. Bharali J. Colloid Interface Sci., 486, 46-57 (2017).
  28. Efficient Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with Bismuth Vanadate and Cobalt(II) Chlorin Complex, K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, ACS Energy Lett., 1, 913-919 (2016).
  29. Hydrogen Peroxide Used as a Solar Fuel in One-Compartment Fuel Cells, S. Fukuzumi, Y. Yamada, ChemElectroChem, 3, 1978-1989 (2016).
  30. A composite catalyst of Pt nanoparticles and an organic photocatalyst incorporated in interparticle mesospaces of silica-alumina nanoparticle ensembles for hydrogen evolution in water, Y. Yamada, H. Tadokoro, M. Naqshbandi, J. Canning, M. J. Crossley, T. Suenobu, S. Fukuzumi, ChemPlusChem, 81, 521-525 (2016).
  31. Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing FeII and RuII Incorporated in Mesoporous Silica-Alumina, Y. Aratani, K. Oyama, T. Suenobu,  Y. Yamada, S. Fukuzumi, Inorg. Chem., 55, 5780-5786 (2016).
  32. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts, Y. Isaka, K. Oyama, Y. Yamada, T. Suenobu, S. Fukuzumi, Catal. Sci. Technol., 6, 681-684 (2016).
  33. Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen, Y. Isaka, Y. Yamada, T. Suenobu, T. Nakagawa, S. Fukuzumi, RSC Adv., 6, 42041-42044 (2016).
  34. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel, K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nature Commun., 7, 11470 (2016).
  35. An Effective Preparation Method of Composite Photocatalysts for Hydrogen Evolution Using an Organic Photosensitizer and Metal Particles Assembled on Alumina-Silica, Y. Yamada, H. Tadokoro, S. Fukuzumi, Catal. Today, 278, 303-311 (2016).
  36. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts, Y. Isaka, K. Oyama, Y. Yamada, T. Suenobu, S. Fukuzumi, Catal. Sci. Technol., 6, 681-684 (2016).
  37. Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate, S. Fukuzumi, J. Jung, T. Kojima, Y. Yamada, W. Nam, Chem, Asian J., 11, 1138-1150 (2016).
  38. Metal-free hydrogen evolution with nanoparticles derived from pyrene via two-photon ionization induced by laser irradiation, K. Ohkubo, N. Kohno, Y. Yamada, S. Fukuzumi, Chem, Commun., 51, 11515-11518 (2015).
  39. Bottom up and Top Down Methods to Improve Catalytic Reactivity for Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with a Ruthenium Complex and Water Oxidation Catalysts, Y. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamada, S. Fukuzumi, J. Mater. Chem. A, 3, 12404-12412 (2015).
  40. Singlet Oxygen Generation from Li+@C60 Nano-Aggregates Dispersed by Laser Irradiation in Aqueous Solution, K. Ohkubo, N. Kohno, Y. Yamada, S. Fukuzumi, Chem. Commun., 51, 8082-8085 (2015).
  41. Ni–Cu Alloy Nanoparticles Loaded on Various Metal Oxides Acting as Efficient Catalysts for Photocatalytic H2 Evolution, Y. Yamada, S. Shikano, S. Fukuzumi, RSC Adv., 5, 44912-44919 (2015).
  42. High and Robust Performance of H2O2 Fuel Cells in the Presence of Scandium Ion, Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci., 8, 1698-1701 (2015).
  43. High Catalytic Activity of Heteropolynuclear Cyanide Complexes Containing Co and Pt Ions for Visible-Light Driven Water Oxidation, Y. Yamada, K. Oyama, R. Gates, S. Fukuzumi, Angew. Chem. Int. Ed., 54, 5613-5617 (2015).
  44. Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica–alumina, Y. Aratani, Y. Yamada, S. Fukuzumi, Chem. Commun. 51, 4662-4665 (2015).
  45. Photocatalytic H2 evolution from NADH with carbon quantum dots/Pt and 2-phenyl-4-(1-naphthyl)quinolinium ion, W. Wu, L. Zhang, K. Ohkubo, Y. Yamada, M. Wu, S. Fukuzumi, J. Photochem. Photobiol., B, 152, 63-70 (2015).
  46. Synergistic Effects of Ni and Cu Supported on TiO2 and SiO2 on Photocatalytic H2 Evolution with an Electron Donor-Acceptor Linked Molecule, Y. Yamada, S. Shikano, T. Akita, S. Fukuzumi, Catal. Sci. Technol., 5, 979-988 (2015).
  47. Laser-induced pinpoint hydrogen evolution from benzene and water using metal free single-walled carbon nanotubes with high quantum yields, K. Ohkubo, N. Kohno, Y. Yamada, S. Fukuzumi, Chem. Sci., 6, 666-674 (2015).
  48. A composite photocatalyst of an organic electron donor-acceptor dyad and a Pt catalyst supported on semiconductor nanosheets for efficient hydrogen evolution from oxalic acid, Y. Yamada, A. Nomura, H. Tadokoro, S. Fukuzumi, Catal. Sci. Technol., 5, 428-437 (2015).
  49. Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol-Spray-Pyrolysis Method for Photocatalytic Hydrogen Evolution, D. Hong, Y. Yamada, M. Sheehan, S. Shikano, C.-H. Kuo, M. Tian, C.-K. Tsung, S. Fukuzumi, ACS Sustainable Chem. Eng. 2, 2588-2594 (2014).
  50. High Power Density of One-Compartment H2O2 Fuel Cells Using Pyrazine-Bridged Fe[MC(CN)4] (MC = Pt and Pd) Complexes as the Cathode, Y. Yamada, M. Yoneda, S. Fukuzumi, Inorg. Chem., 53, 1272-1274 (2014).
  51. Thermal and Photocatalytic Production of Hydrogen Peroxide and Its Use in Hydrogen Peroxide Fuel Cells, S. Fukuzumi, Y. Yamada, Aust. J. Chem., 67, 354-364 (2014).
  52. Hybrid H2-evolution catalysts: in situ formation of H2-evolution catalysts from metal salts inside the mesopores of silica-alumina supporting an organic photosensitiser, Y. Yamada, H. Tadokoro, S. Fukuzumi, RSC Adv., 3, 25677-25680 (2013).
  53. Bioinspired Photocatalytic Water Reduction and Oxidation with Earth-Abundant Metal Catalysts, S. Fukuzumi, D. Hong, Y. Yamada, J. Phys. Chem. Lett., 4, 3458-3467 (2013).
  54. Protonation Equilibrium and Hydrogen Production by a Dinuclear Cobalt-Hydride Complex Reduced by Cobaltocene with Trifluoroacetic Acid, S. Mandal, S. Shikano, Y. Yamada, Y.-M. Lee, W. Nam, A.Llobet, S. Fukuzumi, J. Am. Chem. Soc., 135, 15294-15297 (2013).
  55. Catalytic activity of NiMnO3 for visible light-driven and electrochemical water oxidation, D. Hong, Y. Yamada, A. Nomura, S. Fukuzumi, Phys. Chem. Chem. Phys., 15, 19125-19128 (2013).
  56. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous? D. Hong, S. Mandal, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet, S. Fukuzumi, Inorg. Chem., 52, 9522-9531 (2013).
  57. A Robust One-Compartment Fuel Cell with a Polynuclear Cyanide Complex as a Cathode for Utilizing H2O2 as a Sustainable Fuel at Ambient Conditions, Y. Yamada, M. Yoneda, S. Fukuzumi, Chem.–Eur. J., 19, 11733-11741 (2013).
  58. Robustness of Ru/SiO2 as a Hydrogen Evolution Catalyst in a Photocatalytic System Using an Organic Photocatalyst, Y. Yamada, S. Shikano, S. Fukuzumi, J. Phys. Chem. C, 117, 13143-13152 (2013).
  59. Shape- and Size-Controlled Nanomaterials for Artificial Photosynthesis, S. Fukuzumi, Y. Yamada, ChemSusChem, 6, 1834-1847 (2013).
  60. Acetate Induced Enhancement of Photocatalytic Hydrogen Peroxide Production from Oxalic Acid and Dioxygen, Y. Yamada, A. Nomura, T. Miyahigashi, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A, 117, 3751-3760 (2013).
  61. Long-Lived Electron Transfer State of 2-Phenyl-4-(1-naphthyl)quinolinium Ion Incorporated into Nanosized Mesoporous Silica-Alumina Acting as a Robust Photocatalyst in Water, Y. Yamada, A. Nomura, K. Ohkubo, T. Suenobu, S. Fukuzumi, Chem. Commun., 49, 5132-5134 (2013).[front cover]
  62. Decorating single layer graphene oxide with electron donor and acceptor molecules for the study of photoinduced electron transfer, S. K. Das, C. B. Kc, K. Ohkubo, Y. Yamada, S. Fukuzumi, F. D’Souza, Chem. Commun., 49, 2013-2015 (2013).
  63. Catalytic Activity of Metal-based Nanoparticles for Photocatalytic Water Oxidation and Reduction, S. Fukuzumi, Y. Yamada, J. Mater. Chem., 22, 24284-24296 (2012).
  64. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell, S. Fukuzumi, Y. Yamada, K. D. Karlin, Electrochim. Acta, 82, 493-511 (2012).
  65. Formation of a Long-Lived Electron-Transfer State in Mesoporous Silica-Alumina Composites Enhances Photocatalytic Oxygenation Reactivity, S. Fukuzumi, K. Doi, T. Suenobu, K. Ohkubo, Y. Yamada, K. D. Karlin, Proc. Natl. Acad. Sci., USA, 109, 15572-15577 (2012).
  66. An Active and Robust Catalyst Composed of Only Earth Abundant Elements for Photocatalytic Water Oxidation, D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, J. Am. Chem. Soc., 134, 19572-19575 (2012).
  67. Photocatalytic Water Oxidation by Nanoparticles Derived from Water-Soluble Mononuclear Cobalt Complexes with Organic Ligands, D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam, S. Fukuzumi, Energy Environ. Sci., 5, 7606-7616 (2012).
  68. Photocatalytic Hydrogen Evolution with Ni Nanoparticles by Using 2-Phenyl-4-(1-naphthyl)quinolinium Ion as a Photocatalyst, Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, Energy Environ. Sci., 5, 6111-6118 (2012). [EES blog]
  69. Efficient Water Oxidation by Cerium Ammonium Nitrate with [IrIII(Cp*)(4,4’-bishydroxy-2,2’-bipyridine) (H2O)]2+ as a Precatalyst, D. Hong, M. Murakami, Y. Yamada, S. Fukuzumi, Energy Environ. Sci., 5, 5708-5716 (2012).
  70. Catalytic Application of Shape-controlled Cu2O Particles Protected by Co3O4 Nanoparticles for Hydrogen Evolution from Ammonia Borane, Y. Yamada, K. Yano, S. Fukuzumi, Energy Environ. Sci., 5, 5356-5363 (2012).
  71. Photocatalytic Production of Hydrogen Peroxide by Two-Electron Reduction of Dioxygen with a Carbon-Neutral Oxalate Using 2-Phenyl-4-(1-naphthyl)quinolinium Ion as a Robust Photocatalyst, Y. Yamada, A. Nomura, T. Miyahigashi, S. Fukuzumi, Chem. Commun., 48, 8329-8331 (2012).
  72. Porphyrin Nanochannels Reinforced by Hydrogen Bonding, T. Ishizuka, M. Sankar, Y. Yamada, S. Fukuzumi, T. Kojima, Chem. Commun., 48, 6481-6483 (2012). (back cover)
  73. γ-Al2-xMxO3±y (M = Ti4+ through Ga3+): Potential Pseudo-3D Mesoporous Material with Tunable Acidity and Electronic Structure, T. Mathew, K. Sivaranjani, E.S. Gnanakumar, Y. Yamada, T. Kobayashi, C. S. Gopinath, J. Mater. Chem., 22, 13484-13493 (2012). (inside front cover)
  74. Excitation Energy Transfer from Non-aggregated Molecules to Perylenediimide Nanoribbons via Ionic Interactions in Water, M. Supur, Y. Yamada, S. Fukuzumi, J. Mater. Chem., 22, 12547-12552 (2012).
  75. Photocatalytic Hydrogen Evolution from Carbon-neutral Oxalate with 2-Phenyl-4-(1-naphthyl)quinolinium Ion and Metal Nanoparticles, Y. Yamada, T. Miyahigashi, K. Ohkubo, S. Fukuzumi, Phys. Chem. Chem. Phys., 14, 10564-10571 (2012).
  76. Improvement of Durability of an Organic Photocatalyst in p-Xylene Oxygenation by Addition of a Cu(II) Complex, Y. Yamada, K. Maeda, K. Ohkubo, K. D. Karlin, S. Fukuzumi, Phys. Chem. Chem. Phys., 14, 9654-9659 (2012).
  77. LaCoO3 Acting as an Efficient and Robust Catalyst for Photocatalytic Water Oxidation with Persulfate, Y. Yamada, K. Yano, D. Hong, Shunichi Fukuzumi, Phys. Chem. Chem. Phys., 14, 5753-5760 (2012).
  78. Photocatalytic Hydrogen Evolution Using 9-Phenyl-10-methyl-acridinium Ion Derivatives as Efficient Electron Mediators and Ru-based Catalysts, Y. Yamada, K. Yano, S. Fukuzumi, Aust. J. Chem., 65, 1573-1581 (2012).
  79. Nanocrystal Bilayer for Tandem Catalysis, Y. Yamada, C.-K. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, G. A. Somorjai, P. Yang, Nature Chemistry, 3, 372-376 (2011).
  80. Photocatalytic Hydrogen Evolution under Highly Basic Conditions by Using Ru Nanoparticles and 2-Phenyl-4-(1-naphtyl)quinolinium Ion, Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc., 133, 16136-16145 (2011).
  81. Protonated Iron–Phthalocyanine Complex Used for Cathode Material of a Hydrogen Peroxide Fuel Cell Operated under Acidic Conditions, Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy Environ. Sci., 4, 2822–2825 (2011). (EES blog)
  82. Catalytic Mechanisms of Hydrogen Evolution with Homogeneous and Heterogeneous Catalysts, S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, Hiroaki Kotani, Energy Environ. Sci., 4, 2754-2766 (2011).
  83. Size- and Shape-Dependent Activity of Metal Nanoparticles as Hydrogen-Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution, H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chem.–Eur. J., 17, 2777–2785 (2011).
  84. Electron Delocalization in One-Dimensional Perylenediimide Nanobelts via Photoinduced Electron Transfer, M. Supur, Y. Yamada, M. El-Khouly, T. Honda, S. Fukuzumi, J. Phys. Chem. C., 115, 15040–15047 (2011).
  85. X-ray Crystal Structure of [HSm{VIVO(TPPS)}]n and Encapsulation of Nitrogen Molecules in 1-D Channels, W. Chen, Y. Yamada, G.-N. Liu, A. Kubota, T. Ichikawa, Y. Kojima, G.-C. Guo, S. Fukuzumi, Dalton Trans., 40, 12826-12831 (2011).
  86. Cu/Co3O4 Nanoparticles as a Catalyst for Hydrogen Evolution from Ammonia Borane by Hydrolytic Decomposition, Y. Yamada, K. Yano, Q. Xu, S. Fukuzumi, J. Phys. Chem. C, 114, 16456-16462. (2010).
  87. Hydrogen Peroxide as Sustainable Fuel: Electrocatalysts for Production with a Solar Cell and Decomposition with a Fuel Cell, Y. Yamada, Y. Fukunishi, S. Yamazaki, S. Fukuzumi, Chem. Commun., 46, 7334-7336 (2010).
  88. Effects of p-Substituents on Electrochemical CO Oxidation by Rh Porphyrin-Based Catalysts, S. Yamazaki, Y. Yamada, S. Takeda, M. Goto, T. Ioroi, Z. Siroma, K. Yasuda, Phys. Chem. Chem. Phys., 12, 8968-8976 (2010).
  89. Thermally Stable Pt/Mesoporous Silica Core–Shell Nanocatalysts for High-Temperature Reactions, S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nature Materials, 8, 126-131 (2009).
  90. Perovskite Catalyst (La, Ba)(Fe, Nb, Pd)O3 Applicable to NOx Storage and Reduction System, A. Ueda, Y. Yamada, M. Katsuki, T. Kiyobayashi, Q. Xu, N. Kuriyama, Catal. Commun., 11, 34-37 (2009).
  91. Preparation and Catalytic Reaction of Au/Pd Bimetallic Nanoparticles in Apo-Ferritin, M. Suzuki, M. Abe, T. Ueno, S. Abe, T. Goto, Y. Toda, T. Akita, Y. Yamada, Y. Watanabe, Chem. Commun., 4871-4873 (2009).
  92. Structural Characteristics and Catalytic Activity of Nanocrystalline Ceria−Praseodymia Solid Solutions, B. M. Reddy, G. Thrimurthulu, L. Katta, Y. Yamada, S.-E. Park, J. Phys. Chem. C, 113, 15882-15890 (2009).
  93. Thermal Stability and Dispersion Behavior of Nanostructured CexZr1−XO2 Mixed Oxides over Anatase-TiO2: A Combined Study of CO Oxidation and Characterization by XRD, XPS, TPR, HREM, and UV−Vis DRS, B. M. Reddy, P. Bharali, P. Saikia, G. Thrimurthulu, Y. Yamada, T. Kobayashi, Ind. Eng. Chem. Res., 48, 453-462 (2009).
  94. Sum Frequency Generation and Catalytic Reaction Studies of the Removal of Organic Capping Agents from Pt Nanoparticles by UV−Ozone Treatment, C. Aliaga, J. Y. Park, Y. Yamada, H. S. Lee, C.-K. Tsung, P. Yang, G. A. Somorjai, J. Phys. Chem. C, 113, 6150-6155 (2009).
  95. Near-Monodisperse Ni−Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation, Y. Zhang, W. Huang, S. E. Habas, J. N. Kuhn, M. E. Grass, Y. Yamada, P. Yang, G. A. Somorjai, J. Phys. Chem. C, 112, 12092-12095 (2008).
  96. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Nano-Structured Indium Oxide Catalysts, T. Umegaki, K. Kuratani, Y. Yamada, A. Ueda, N. Kuriyama, T. Kobayashi, Q. Xu, J. Power Sources, 179, 566-570 (2008).
  97. Structural Characterization and Catalytic Activity of Nanosized Ceria−Terbia Solid Solutions, B. M. Reddy, P. Saikia, P. Bharali, Y. Yamada, T. Kobayashi, M. Muhler, W. Grünert, J. Phys. Chem. C, 112, 16393-16399 (2008).
  98. Electrochemical Oxidation of Oxalic Acid by Rh Octaethylporphyrin Adsorbed on Carbon Black at Low Overpotential, S. Yamazaki, Y. Yamada, N. Fujiwara, T. Ioroi, Z. Siroma, H. Senoh, K. Yasuda, J. Electroanal. Chem., 602, 96-102 (2007).
  99. Non-Stoichiometric Quinhydrone-Type CT Complexes: Mixed Crystals of Triptycenequinone and 1,4-Dimethoxytriptycene with Characteristic Color Caused by Local CT Interaction, K. Yamamura, J. Yamane, K. Eda, F. Tajima, Y. Yamada, M. Hashimoto, J. Mol. Struct., 842, 12-16 (2007).
  100. Utilization of Combinatorial Method and High Throughput Experimentation for the Development of Heterogeneous Catalysts, Y. Yamada, T. Kobayashi, J. Jpn. Petrol. Inst., 49, 157-167 (2006).
  101. Tuning the Formation of Cadmium(II) Urocanate Frameworks by Control of Reaction Conditions: Crystal Structure, Properties, and Theoretical Investigation, R.-Q. Zou, R.-Q. Zhong, L. Jiang, Y. Yamada, N. Kuriyama, Q. Xu, Chem. –Asian J., 1, 536-543 (2006).
  102. Strong Fluorescent Emission of a New Fourfold-Interpenetrated Diamondoid Metal-Organic Framework of Zinc(II) Urocanate with One-Dimensional Open Channels, R.-Q. Zou, Y. Yamada, Q. Xu, Microporous Mesoporous Mater., 91, 233-237 (2006).
  103. A Direct CO Polymer Electrolyte Membrane Fuel Cell, S. Yamazaki, T. Ioroi, Y. Yamada, K. Yasuda, T. Kobayashi, Angew. Chem., Int. Ed., 45, 3120-3122 (2006).
  104. A Novel DME Steam-Reforming Catalyst Designed with Fact Database on-Demand, Y. Yamada, T. Mathew, A. Ueda, H. Shioyama, T. Kobayashi, Appl. Surf. Sci., 252, 2593-2597 (2006).
  105. Optimization of Reaction Conditions for Cyclohexene Epoxidation with H2O2 over Nanocrystalline Mesoporous TiO2 Loaded with RuO2, T. Sreethawong, Y. Yamada, T. Kobayashi, S. Yoshikawa, J. Mol. Catal. A: Chem., 248, 226-232 (2006).
  106. C2F6 Plasma Treatment of a Carbon Support for a PEM Fuel Cell Electrocatalyst, H. Shioyama, K. Honjo, M. Kiuchi, Y. Yamada, A. Ueda, N. Kuriyama, T. Kobayashi, J. Power Sources, 161, 836-838 (2006).
  107. Structural Characterization and Oxidative Dehydrogenation Activity of V2O5/CeXZr1-XO2/SiO2 Catalysts, B. M. Reddy, P. Lakshmanan, S. Loridant, Y. Yamada, T. Kobayashi, C. Lopez-Cartes, T. C. Rojas, A. Fernandez, J. Phys. Chem. B, 110, 9140-9147 (2006).
  108. Effect of Support on the Activity of Ga2O3 Species for Steam Reforming of Dimethyl Ether, T. Mathew, Y. Yamada, A. Ueda, H. Shioyama, T. Kobayashi, C. S. Gopinath, Appl. Catal. A, 300, 58-66 (2006).
  109. Estimation of Specific Interaction between Several Co Porphyrins and Carbon Black: Its Influence on the Electrocatalytic O2 Reduction by the Porphyrins, S. Yamazaki, Y. Yamada, T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda, Y. Miyazaki, J. Electroanal. Chem., 576, 253-259 (2005).
  110. Efficient Electrochemical Conversion of Carbon Monoxide by Rhodium Octaethylporphyrin Adsorbed on Carbon Black, S. Yamazaki, Y. Yamada, K. Yasuda, Inorg. Chem., 44, 6512-6514 (2005).
  111. A Semiconductor Gas Sensor System for High Throughput Screening of Heterogeneous Catalysts for the Production of Benzene Derivatives, Y. Yamada, A. Ueda, H. Shioyama, T. Maekawa, K. Kanda, K. Suzuki, T. Kobayashi, Meas. Sci. Technol., 16, 229-234 (2005).
  112. Instruments for Preparation of Heterogeneous Catalysts by an Impregnation Method, Y. Yamada, T. Akita, A. Ueda, H. Shioyama, T. Kobayashi, Rev. Sci. Instrum., 76, 062226 (2005).
  113. Catalysis of Nanocrystalline Mesoporous TiO2 on Cyclohexene Epoxidation with H2O2: Effects of Mesoporosity and Metal Oxide Additives, T. Sreethawong, Y. Yamada, T. Kobayashi, S. Yoshikawa, J. Mol. Catal. A: Chem., 241, 23-32 (2005).
  114. Graphite Intercalation Compounds as PEMFC Electrocatalyst Supports, H. Shioyama, Y. Yamada, A. Ueda, T. Kobayashi, Carbon, 43, 2374-2378 (2005).
  115. Surface Characterization and Catalytic Activity of Sulfate-, Molybdate- and Tungstate-Promoted Al2O3–ZrO2 Solid Acid Catalysts, B. M. Reddy, P. M. Sreekanth, Y. Yamada, T. Kobayashi, J. Mol. Catal. A: Chem., 227, 81-89 (2005).
  116. Switching of Turn Conformation in an Aspartate Anion Peptide Fragment by NH•••O Hydrogen Bonds, A. Onoda, H. Yamamoto, Y. Yamada, K. Lee, S. Adachi, T. A. Okamura, K. Yoshizawa-Kumagaye, K. Nakajima, T. Kawakami, S. Aimoto, N. Ueyama, Biopolymers, 80, 233-248 (2005).
  117. Metal Oxide Catalysts for DME Steam Reforming: Ga2O3 and Ga2O3–Al2O3 Catalysts with and without Copper, T. Mathew, Y. Yamada, A. Ueda, H. Shioyama, T. Kobayashi, Appl. Catal. A, 286, 11-22 (2005).
  118. Metal Oxide Catalysts for DME Steam Reforming: Ga2O3 and Ga2O3/Al2O3 Catalysts, T. Mathew, Y. Yamada, A. Ueda, H. Shioyama, T. Kobayashi, Catal. Lett., 100, 247-253 (2005).
  119. Structures and Properties of Octaethylporphinato(Phenolate)Iron(III) Complexes with NH···O Hydrogen Bonds: Modulation of Fe–O Bond Character by the Hydrogen Bond, D. Kanamori, Y. Yamada, A. Onoda, T. Okamura, S. Adachi, H. Yamamoto, N. Ueyama, Inorg. Chim. Acta, 358, 331-338 (2005).
  120. The Roles of Redox and Acid–Base Properties of Silica-Supported Vanadia Catalysts in the Selective Oxidation of Ethane, Z. Zhao, Y. Yamada, A. Ueda, H. Sakurai, T. Kobayashi, Catal. Today, 93-95, 163-171 (2004).
  121. Reversible Electrochemical Conversion between Rh(II) and Rh(III) States in Rh Porphyrin Adsorbed on Carbon Black, S. Yamazaki, Y. Yamada, K. Yasuda, Inorg. Chem., 43, 7263-7265 (2004).
  122. High-Throughput Screening of PEMFC Anode Catalysts by IR Thermography, Y. Yamada, A. Ueda, H. Shioyama, T. Kobayashi, Appl. Surf. Sci., 223, 220-223 (2004).
  123. Stabilization of Carboxylate Anion with a NH•••O Hydrogen Bond: Facilitation of the Deprotonation of Carboxylic Acid by the Neighboring Amide NH Groups, A. Onoda, Y. Yamada, J. Takeda, Y. Nakayama, T. Okamura, M. Doi, H. Yamamoto, N. Ueyama, Bull. Chem. Soc. Jpn., 77, 321-329 (2004).
  124. Stabilization of Calcium- and Terbium-Carboxylate Bonds by NH•••O Hydrogen Bonds in a Mononuclear Complex: A Functional Model of the Active Site of Calcium-Binding Proteins, A. Onoda, Y. Yamada, Y. Nakayama, K. Takahashi, H. Adachi, T. Okamura, A. Nakamura, H. Yamamoto, N. Ueyama, D. Vyprachticky, Y. Okamoto, Inorg. Chem., 43, 4447-4455 (2004).
  125. A Combinatorial Study on Catalytic Synergism in Supported Metal Catalysts for Fuel Cell Technology, T. Kobayashi, A. Ueda, Y. Yamada, H. Shioyama, Appl. Surf. Sci., 223, 102-108 (2004).
  126. High Throughput Experiments on Methane Partial Oxidation Using Molecular Oxygen over Silica Doped with Various Elements, Y. Yamada, A. Ueda, H. Shioyama, T. Kobayashi, Appl. Catal. A, 254, 45-58 (2003).
  127. Simple Preparation Method of Isolated Iron (III) Species on Silica Surface, Y. Yamada, Y. Ichihashi, H. Ando, A. Ueda, H. Shioyama, T. Kobayashi, Chem. Lett., 32, 208-209 (2003).
  128. Electrochemical Oxidation of CO in Sulfuric Acid Solution over Pt and PtRu Catalysts Modified with TaOx and NbOx, A. Ueda, Y. Yamada, T. Ioroi, N. Fujiwara, K. Yasuda, Y. Miyazaki, T. Kobayashi, Catal. Today, 84, 223-229 (2003).
  129. Screening of Carbon Supports for DMFC Electrode Catalysts by Infrared Thermography, H. Shioyama, Y. Yamada, A. Ueda, T. Kobayashi, Carbon, 41, 579-625 (2003).
  130. Raman and X-Ray Photoelectron Spectroscopy Study of CeO2−ZrO2 and V2O5/CeO2−ZrO2 catalysts, B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, Langmuir, 19, 3025-3030 (2003).
  131. Structural Characterization of CeO2−MO2 (M = Si4+, Ti4+, and Zr4+) Mixed Oxides by Raman Spectroscopy, X-Ray Photoelectron Spectroscopy, and Other Techniques, B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, J. Phys. Chem. B, 107, 11475-11484 (2003).
  132. Structural Characterization of CeO2−TiO2 and V2O5/CeO2−TiO2 catalysts by Raman and XPS Techniques, B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, J. Phys. Chem. B, 107, 5162-5167 (2003).
  133. Synthesis of Surfactant-Assisted Microporous Layered Tin Phenylphosphonate, N. K. Mal, M. Fujiwara, Y. Yamada, M. Matsukata, Chem. Lett., 32, 292-293 (2003).
  134. Synthesis of a Microporous Layered Titanium Phenylphosphonate in Presence of Sodium Dodecylsulfate, N. K. Mal, M. Fujiwara, Y. Yamada, K. Kuraoka, M. Masahiko, J. Ceram. Soc. Jpn., 111, 219-221 (2003).
  135. Optimization of Fe/SiO2 Based Metal Oxides as Selective Oxidation Catalyst of Propane with Combinatorial Approach, Y. Yamada, A. Ueda, K. Nakagawa, T. Kobayashi, Res. Chem. Intermed., 28, 397-407 (2002).
  136. Surface Characterization of Sulfate, Molybdate, and Tungstate Promoted TiO2-ZrO2 Solid Acid Catalysts by XPS and Other Techniques, B. M. Reddy, P. M. Sreekanth, Y. Yamada, Q. Xu, T. Kobayashi, Appl. Catal. A, 228, 269-278 (2002).
  137. Surface Characterization of La2O3−TiO2 and V2O5/La2O3−TiO2 catalysts, B. M. Reddy, P. M. Sreekanth, E. P. Reddy, Y. Yamada, Q. Xu, H. Sakurai, T. Kobayashi, J. Phys. Chem. B, 106, 5695-5700 (2002).
  138. Surface Characterization of CeO2/SiO2 and V2O5/CeO2/SiO2 Catalysts by Raman, XPS, and Other Techniques, B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, J. Phys. Chem. B, 106, 10964-10972 (2002).
  139. Mononuclear Ca(II)−Bulky Aryl−Phosphate Monoanion and Dianion Complexes with Ortho-Amide Groups, A. Onoda, Y. Yamada, T. Okamura, H. Yamamoto, N. Ueyama, Inorg. Chem., 41, 6038-6047 (2002).
  140. Synthesis of Zigzag-Chain and Cyclic-Octanuclear Calcium Complexes and Hexanuclear Bulky Aryl-Phosphate Sodium Complexes with Ortho-Amide Groups:  Structural Transformation Involving a Network of Inter- and Intramolecular Hydrogen Bonds, A. Onoda, Y. Yamada, T. Okamura, M. Doi, H. Yamamoto, N. Ueyama, J. Am. Chem. Soc., 124, 1052-1059 (2002).
  141. Rapid Evaluation of Oxidation Catalysis by Gas Sensor System: Total Oxidation, Oxidative Dehydrogenation, and Selective Oxidation over Metal Oxide Catalysts, Y. Yamada, A. Ueda, Z. Zhao, T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi, Catal. Today, 67, 379-387 (2001).
  142. Synthesis and Characterization of Ti-MCM-41 and Vapor-Phase Epoxidation of Propylene Using H2 and O2 over Au/Ti-MCM-41, B. S. Uphade, Y. Yamada, T. Akita, T. Nakamura, M. Haruta, Appl. Catal. A, 215, 137-148 (2001).
  143. Secure Binding of Alternately Amidated Poly(Acrylate) to Crystalline Calcium Carbonate by NH•••O Hydrogen Bond, N. Ueyama, H. Kozuki, M. Doi, Y. Yamada, K. Takahashi, A. Onoda, T. Okamura, H. Yamamoto, Macromolecules, 34, 2607-2614 (2001).
  144. Novel Catalysts Having NOx-Adsorption Sites for the Selective Oxidation of Ethane, A. Ueda, Y. Yamada, T. Kobayashi, Appl. Catal. A, 209, 391-399 (2001).
  145. Dinuclear Calcium Complex with Weakly NH•••O Hydrogen-Bonded Sulfonate Ligands, A. Onoda, Y. Yamada, M. Doi, T. Okamura, N. Ueyama, Inorg. Chem., 40, 516-521 (2001).
  146. Oxidation of Ethane into Acetaldehyde and Acrolein over Silica Containing Cesium and a Very Small Amount of Additives, Z. Zhao, Y. Yamada, A. Ueda, H. Sakurai, T. Kobayashi, Appl. Catal. A, 196, 37-42 (2000).
  147. 分 子内NH•••O水素結合により強化された炭酸ストロンチウム結晶と高分子カルボシラート配位子との複合 体の合成, 上山憲一、山田裕介、上月秀一、岡村高 明、高分子論文集, 57, 228-232 (2000).
  148. Selective Oxidation of Ethane to Acetaldehyde and Acrolein over Silica-Supported Vanadium Catalysts Using Oxygen as Oxidant, Z. Zhao, Y. Yamada, Y. Teng, A. Ueda, K. Nakagawa, T. Kobayashi, J. Catal., 190, 215-227 (2000).
  149. Dinuclear Calcium Complexes with Intramolecularly NH•••O Hydrogen-Bonded Dicarboxylate Ligands, N. Ueyama, J. Takeda, Y. Yamada, A. Onoda, T. Okamura, A. Nakamura, Inorg. Chem., 38, 475-478 (1999).
  150. Acrolein Formation in the Oxidation of Ethane over Silica Catalysts Supporting Iron and Cesium, K. Nakagawa, Y. Teng, Z. Zhao, Y. Yamada, A. Ueda, T. Suzuki, T. Kobayashi, Catal. Lett., 63, 79-82 (1999).
  151. Polymeric and Dimeric Magnetic Properties of Square Planar Cu(II) Species Controlled by Hydrogen Bond Networks: [CuII{OCO-2,6-(CH3CONH)2C6H3}2(H2O)2]•nH2O (n = 1,4), Y. Yamada, N. Ueyama, T. Okamura, W. Mori, A. Nakamura, Inorg. Chim. Acta, 275-276, 43-51 (1998).
  152. Synthesis and Properties of Octaethylporphinato(Arenethiolato)Iron(III) Complexes with Intramolecular NH•••S Hydrogen Bond:  Chemical Function of the Hydrogen Bond, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, S. Oka, H. Sakurai, A. Nakamura, Inorg. Chem., 37, 2415-2421 (1998).
  153. Structure and Properties of Tetraphenylporphinate Iron(III) Complexes with an Intramolecular NH•••S Benzenethiolate or NH•••O Phenolate Hydrogen Bond, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, A. Nakamura, Inorg. Chim. Acta, 283, 91-97 (1998).
  154. Calcium Complexes of Carboxylate-Containing Polyamide with Sterically Disposed NH•••O Hydrogen Bond: Detection of the Polyamide in Calcium Carbonate by 13C Cross-Polarization/Magic Angle Spinning Spectra, N. Ueyama, T. Hosoi, Y. Yamada, M. Doi, T. Okamura, A. Nakamura, Macromolecules, 31, 7119-7126 (1998).
  155. Magnetic Properties or Intramolecularly Hydrogen-Bonded Carboxylate Copper(II) Dimer Complexes, N. Ueyama, Y. Yamada, J. Takeda, T. Okamura, W. Mori, A. Nakamura, Chem. Commun., 1377-1378 (1996).
  156. Structure and Properties of [Fe4S4{2,6-bis(acylamino)benzenethiolato-S}4]2- and [Fe2S2{2,6-bis(acylamino) benzenethiolato-S}4]2-:  Protection of the Fe−S Bond by Double NH•••S Hydrogen Bonds, N. Ueyama, Y. Yamada, T. Okamura, S. Kimura, A. Nakamura, Inorg. Chem., 35, 6473-6484 (1996).
  157. Cytochrome P-450 Model (Porphinato)(Thiolato)Iron(III) Complexes with Single and Double NH•••S Hydrogen Bonds at the Thiolate Site, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, A. Nakamura, J. Am. Chem. Soc., 118, 12826-12827 (1996).
  158. Crystal and Solution Structures of Novel Bulky Bis[2,6-Bis(Acylamino)Phenyl] Disulfides. Absence of Covalent NH•••S Hydrogen Bond between Amide NH and Neighboring Disulfide in Bis[2,6-Bis(Pivaloylamino)Phenyl] Disulfide, N. Ueyama, T. Okamura, Y. Yamada, A. Nakamura, J. Org. Chem., 60, 4893-4899 (1995).

 

国 際会議プロシーディング

  1. Combinatorial Catalysis for Hydrogen Production from Ethanol , Y. Yamada, T. Akita, T. Umegaki, T. Mathew, A. Ueda, H. Shioyama, T. Kobayashi, Material Research Society Proceedings, 894, 183-190 (2005).
  2. Synthesis and characterization of microporous layered zirconium phenylphosphonate, N. K. Mal, M. Sasidharan, M. Fujiwara, Y. Yamada and M. Matsukata, Stud. Surf. Sci. Catal., 154, 1153-1159 (2004).
  3. Combinatorial catalysis concerning PEMFC technology, Y. Yamada, A. Ueda, H. Shioyama, N. Fujiwara, T. Ioroi, K. Yasuda, Y. Miyazaki, T. Kobayashi, Trans. Mat. Res. Soc. Jpn., 29, 309-313 (2004).
  4. Combinatorial Catalysis Survey Concerning Proton Exchange Membrane Fuel Cell Technology - As a Part of “MATERIOMICS”-, Y. Yamada, A. Ueda, H. Shioyama, T. Mathew, T. Ioroi, K. Yasuda, T. Akita, S. Ichikawa, K. Tanaka, M. Kohyama, T. Kobayashi, Material Research Society Proceedings, 804, 205-210 (2003).
  5. Analytical TEM Observations of Combinatorial Catalyst Libraries for Hydrogen Production; As a Part of “MATERIOMICS”-, T. Akita, A. Ueda, Y. Yamada, S. Ichikawa, K. Tanaka, M. Kohyama, T. Kobayashi, Material Research Society Proceedings, 804, 211-216 (2003).
  6. High throughput experiment on the investigation of oxidation catalysts with gas sensor system, Y. Yamada, A. Ueda, T. Kobayashi, Stud. Surf. Sci. Catal., 145, 275-278 (2003).
  7. Vapor-Phase Epoxidation of Propene Using H2 and O2 over Au/Ti-MCM-41 and Au/Ti-MCM-48, B. S. Uphade, M. Okumura, Y. Yamada, S. Tsubota, M. Haruta, Stud. Surf. Sci. Catal., 130, 833-838 (2000).
  8. Potential of Gas Sensor System for High Throughput Screening of Combinatorial Catalysts, Y. Yamada, M. Ando, A. Ueda, T. Kobayashi, K. Suzuki, T. Maekawa, T. Takada, in NATO ASI Series, “Combinatorial Catalysis and High Throughput Catalyst Design and Testing”, C560, 415-421, Kluwer Academic Publishers, Netherland (2000)
  9. Utilization of Odor Sensor System for High Throughput Catalysts, Y. Yamada, A. Ueda, M. Ando, T. Kobayashi, T. Maekawa, K. Suzuki, T. Takada, Proceedings of 196th meeting of the electrochemical society "Chemical Sensors IV", 99, 143-148 (1999).
  10. Strong Binding of Ca2+ Ion by Intramolecularly Hydrogen Bonded Carboxylate Ligand, Y. Yamada, N. Ueyama, T. Okamura, S. Kubo, K. Yamaguchi, A. Nakamura, J. Inorg. Biochem., 67, 34 (1997).
  11. (Porphinato)(Thiolato)Iron(III) Complexes with NH•••S Hydrogen Bonds at the Thiolate Site, A. Nakamura, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, FASEB J., 11, 54 (1997).

日本語総説

  1. 「過酸化水素のエネルギー利用技術」山田裕介、ケミカルエンジニアリング、64, 466-470 (2019).
  2. 「種々の担体上での複合型光触媒水素発生系の構築」山田裕介、田部博康、JXTG Technical Review, 60, 84-90 (2018).
  3. 「シアノ架橋金属錯体ポリマーの固体触媒としての利用」山田裕介Bull. Jpn. Soc. Coord. Chem., 68, 16-28 (2016).
  4. 「コンビナトリアル触媒開発のこれまで」山田裕介、 セラミックス, 45, 738 -743 (2010).
  5. ユ ビキタスエネルギーデバイス用触媒におけるマテリオミクス」山田裕介、上田厚、梅垣哲 士、マテリアルインテグレーション, 21, 39-44 (2008)
  6. 環 境エネルギー材料開発のためのコンビケム技術」山田裕介、小林哲彦、ケミ カルエンジニアリング, 51, 1-6 (2006)
  7. コ ンビ触媒研究と表面構造解析」山田裕介、秋田知樹、田中孝治、香山正憲、小林哲彦、表面 科学, 25, 699-705 (2004)
  8. 「金属/酸化物触媒の構造解析」田 中孝治、秋田知樹、山田裕介、上田厚、まてりあ, 42, 897 (2003)
  9. コ ンビナトリアルケミストリの固体触媒への展開」小林哲彦、山田裕介、化学工業, 51, 121-127 (2002)
  10. 「コンビナトリアルケミストリーの 固体触媒への適用」山田裕介、小林哲彦、ペトロテック, 24, 788-791 (2001)
  11. コ ンビナトリアルケミストリにおける固体触媒パラレル調製と人工知能利用」山田裕介、小林 哲彦、水野哲孝、触媒, 43, 310-315 (2001)
  12. 固 体触媒の開発」小林哲彦、山田裕介、機能材料, 21, 38-44 (2001).
  13. 「固体触媒へのコンビナトリアルケ ミストリの導入と迅速ガス分析の必要性」山田裕介、小林哲彦、化学センサ, 15, 100-108 (1999)

 

書籍

  1. 「統合型光触媒系の原理」山田裕介、「光エネルギー変換における分子触媒の新展開」(日本化学会編)化学同人(2020)
  2. 「統合型分子・ナノ粒子触媒によるエネルギー創成」山田裕介、「光エネルギー変換における分子触媒の新展開」(日本化学会編)化学同人(2020)
  3. Electrocatalysts for Hydrogen Peroxide Reduction Used in Fuel Cells, Y. Yamada, in Anion Exchange Membrane Fuel Cells, edited by L. An and T. S. Zhao, Nature-Springer (2018) pp. 141-168 (ISBN: 978-3-319-71370-0)
  4. Photocatalytic Production of Hydrogen with Earth-Abundant Metal Catalysts, S. Fukuzumi, Y. Yamada, in Sustainable Inorganic Chemistry, edited by D. A. Atwood, John Wiley & Sons (2016) pp. 439¬–450 (ISBN:9781118703427).
  5. Kinetics and Mechanisms of Reduction of Protons and Carbon Dioxide Catalyzed by Metal Complexes and Nanoparticles, S. Fukuzumi, T. Suenobu, Y. Yamada, in Organometallics and Related Molecules for Energy Conversion, edited by W.-Y. Wong, Wiley-VCH (2015) pp. 313-346
  6. Photocatalytic Hydrogen Evolution, Y. Yamada, S. Fukuzumi, in “Fuel Production with Heterogeneous Catalysis”, edited by J. Sa, Taylor & Francis (2014) pp. 63-91 (ISBN: 978-1-4822-0371-4)
  7. 「光触媒水素発生系における水素発 生触媒」山田裕介、福住俊一「人工光合成―システ ム構築に向けての最新技術動向―」(福住俊一 監修)シーエムシー出版(2013)pp. 43-52.
  8. 「過酸化水素燃料電池」山田裕介、福住俊一「人工光合成―システム構築に向けての最 新技術動向―」(福住俊一 監修)シーエムシー出版(2013)pp. 253-262.
  9. Gas sensor Technology for the High Throughput Screening in Catalysis, Y. Yamada, T. Kobayashi in “High-Throughput Screening in Chemical Catalysis”, Wiley-VCH (2004).
  10. High-Throughput Screening of Oxidation Catalysts with Gas Sensors, Y. Yamada, T. Kobayashi in  “High-Throughput Analysis:  “A Tool for Combinatorial Materials Science””, edited by R. A. Potyrailo and E. J. Amis, Kluwer Academic/Plenum Publishers (2003).
  11. 「コンビナトリアル触媒」山田裕介、小林哲彦、「実験化学 講座 第5版」 (25巻) 丸善 (2006).
  12. 「コンビナトリアル触媒」山田裕介、小林哲彦、「コンビナ トリアルサイエンスの新展開」(高橋孝志、鯉沼秀臣、上田充美編)シーエムシー出版 (2002).

 特許

  1. “Nanocrystal Assembly for Tandem Catalysis”, U.S. patent, application serial no. 13/441,240 filed on 06-Apr-2012.
  2.  “Exhaust Gas Treating Catalyst and Exhaust Gas Purification Apparatus Using the Same”, Korea Patent 10-1319680 (2013.10.11成立)
  3. “Exhaust Gas Treating Catalyst and Exhaust Gas Purification Apparatus Using the Same”, India Patent, 832/MUMNP/2011 filed on 25-July-2011.
  4. “Exhaust Gas Treating Catalyst and Exhaust Gas Purification Apparatus Using the Same”, PCT/JP2009/058331 filed on 29-Apr-2011.
  5. “Apparatus for Evaluating Catalyst Performance”, U.S. Patent 6,495,105 (2002.12.17成立)
  6. 特許第4469953号「シュウ酸類の電気化学的酸化反応用触媒」
  7. 特許第4471191号「脱臭触媒の製造方法」
  8. 特許第5019449号「一酸化炭素の化学的酸化 用触媒」
  9. 特許第4985351号「排ガス処理触媒および排ガス浄化装置」
  10. 特開2010-214313「一酸化炭素の化学的酸化用触媒」
  11. 特開2010-104933「排ガス処理触媒およびこれを使用する排ガス浄化装置」
  12. 特許第4755131号「複合酸化物触媒およびそ の製造方法並びに排ガス浄化装置」
  13. 特許第4613350号「一酸化炭素の電気化学的酸化用触媒」
  14. 特許第4568881一酸化炭素の電気化学的酸 化用触媒」
  15. 特許第4599539号「固体高分子形燃料電池用カソード電極触媒」
  16. 特許第4635248号「固体高分子形燃料電池用カソード電極触媒とその製造方 法」
  17. 特許第4543167号「脱臭剤及びその製造方法」
  18. 特許第4264514号「ジメチルエーテル改質用触媒およびこれを用いる水素含 有ガスの製造方法」
  19. 特開2005-246111「ジメチルエーテル改質用触媒およびこれを用いる水素含有 ガスの製造方法」
  20. 特開2005-056686「固体高分子形燃料電池におけるカソード」
  21. 特許第4289662号「カーボンナノチューブを 用いたシート状触媒構造体およびその製造方法」
  22. 特許第3940794号「排ガス中の炭化水素燃焼用触媒及び排ガス中の炭化水素 燃焼方法」
  23. 特許第3861146号「燃料電池用負極触媒」
  24. 特許第4019145号「封入体フリーの組換えタンパク質を得る方法」
  25. 特許第4016100号「水性ガスシフト反応用触媒」
  26. 特許第4022615水性ガスシフト反応及びメ タノール水蒸気改質反応用触媒」
  27. 特開2003-310723「空気浄化装置、および触媒」
  28. 特許第4696231号「触媒フィルタの製造法」
  29. 特許第4779107号「触媒フィルタ、および空気浄化装置」
  30. 特許第3959459号「触媒性能評装置」
  31. 特願2017-165594「有機リン化合物分解触媒」山田裕介、田部博康、寺島千尋 (2017.8.30)
  32. 特願2019-035332「多孔質構造体」山田裕介、田部博康、山根真里 (2019.2.28)
  33. 特願2019-163690「金属酸化物–酵素複合体の製造方法」山田裕介、田部博康 (2019.9.9)
  34. 特願2020-036881 「ペプチド−過酸化水素付加物及びその製造方法」山田裕介、田部博康 (2020.3.4)